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Self- and binary Maxwell–Stefan (MS) diffusion coefficients were deter-
mined by equilibrium molecular dynamics simulations with the Green–Kubo
method. This study covers self-diffusion coefficients at liquid states for eight
pure fluids, i.e., F2, N2, CO2, CS2, C2H6, C2H4, C2H2, and SF6 as well as
MS diffusion coefficients for three binary mixtures N2+CO2, N2+C2H6, and
CO2+C2H6. The fluids were modeled by the two-center Lennard–Jones plus
point-quadrupole pair potential, with parameters taken from previous work
of our group which were determined solely on the basis of vapor–liquid equi-
librium data. Self-diffusion coefficients are predicted with a statistical uncer-
tainty less than 1%, and they agree within 2–28% with the experimental data.
The correction of the simulation data due to the finite size of the system
increases the value of the self-diffusion coefficient typically by 10%. If this
correction is considered, better agreement with the experimental data can be
expected for most of the studied fluids. MS diffusion coefficients for three
binary mixtures were also predicted; their statistical uncertainty is about 10%.
These results were used to test three empirical equations to estimate MS
diffusion coefficients in binary mixtures, i.e., the equations of Caldwell and
Babb, of Darken, and of Vignes. The equations of Caldwell and Babb and
of Vignes show qualitatively different behavior of the MS diffusion coefficient
than that observed in the simulations. In agreement with previous work, the
best results are obtained in all cases with the equation of Darken.
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1. INTRODUCTION

Traditionally, self-diffusion coefficients and Maxwell–Stefan diffusion
coefficients in mixtures are obtained from empirical correlations or with
more or less theoretically based equations. Although very successful in
practical applications, this approach is limited to the range where corre-
lations were adjusted to experimental data and, thus, by the availability
of experimental data to fit such correlations. With increasing computer
power, molecular simulation has become an interesting alternative tool to
investigate a wide range of phenomena in many fields of science and engi-
neering, among which is diffusion. The first simulation studies on self-
diffusion coefficients date back to the 1960s, when Alder and Wainwright
[1, 2] carried out simulations with hard spheres and discovered the long-
time tail of the velocity correlation function. Furthermore, Jacucci and
McDonald [3], Jolly and Bearman, and Schoen and Hoheisel [4, 5] car-
ried out computations of the binary transport coefficients, and investigated
the contribution of the cross correlation to the binary Maxell–Stefan (MS)
diffusion coefficient. These studies established the calculation methodology
and paved the way for subsequent studies aimed to predict diffusion coeffi-
cients. More recently and from an engineering point of view, Stoker and
Rowley [6, 7] used molecular simulation to calculate binary MS diffusion
coefficients of binary alkane mixtures. They proposed calculating binary
MS diffusion coefficients from self-diffusion coefficient data.

In recent work of our group, it was shown that the Lennard–
Jones (LJ) potential, adjusted only to experimental vapor–liquid equilib-
ria, satisfactorily predicts the self- and binary MS diffusion coefficients [8],
shear viscosities, and thermal conductivities [9] of several simple fluids and
their mixtures. These results confirm the known suitability of the spheri-
cal LJ potential to describe these fluids [10], and also show that the deter-
mination of the potential parameters from vapor–liquid equilibria is an
adequate choice to predict transport properties with reasonable accuracy,
at least for simple fluids.

Here, this investigation is extended to more complex molecules. The
intermolecular interactions are described by the two-center Lennard–Jones
plus point-quadrupole (2CLJQ) potential. This model has been employed
successfully by several authors, for modeling thermodynamic properties
and the self-diffusion coefficients of simple real fluids [11–15]. Although
the 2CLJQ potential is not new, the prediction of transport properties
with such a model has still not been explored in detail. In order to
investigate the suitability and performance of the 2CLJQ potential with
respect to self-diffusion coefficients, they were calculated in the present
work for a range of molecular fluids (F2, N2, CO2, CS2, C2H6, C2H4,
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C2H2, SF6) and compared to existing experimental data for these flu-
ids. Good predictions of the self-diffusion coefficients were observed in
most cases. Also self- and MS diffusion coefficients for the binary mix-
tures N2 + CO2, N2 + C2H6, and CO2 + C2H6 were studied. These results
were used to evaluate the performance of three equations for describing
binary MS diffusion coefficients, namely, the equations of Caldwell and
Babb [16], Darken [17], and Vignes [18]. A direct comparison of simula-
tion results to experimental data of binary MS diffusion coefficients is not
possible for the fluids studied here, because of the lack of such data.

2. METHOD

2.1. Molecular Model

In the present work, interactions between molecules are described by
2CLJQ based potential models. These models have recently been devel-
oped in our group [15] as part of a study covering 25 pure substances.
The 2CLJQ model is a pairwise additive potential model consisting of
two Lennard–Jones sites a distance L apart plus a point-quadrupole of
moment Q located in the geometric center of the molecule and oriented
along the molecular axis, which connects the two LJ sites. The interaction
energy of two molecules i and j is

u
2CLJQ
ij =

2∑

a=1

2∑

b=1

4εij

[(
σij

rab

)12

−
(

σij

rab

)6
]

+uQ(rij , θi, θj , φij ,Q). (1)

Here, rab is the distance between LJ site a and LJ site b; a counts the two
sites of molecule i, and b counts those of molecule j . The LJ parameters
σij and εij represent the size and energy parameters of the LJ potential,
respectively. The quadrupolar contribution is given by [19]

uQ(rij , θi, θj , φij ,Q)= 3
4

Q2

r5
ij

[1−5(c2
i + c2

j )−15c2
i c

2
j +2(sisj c−4cicj )

2],

(2)

with ck = cos θk, sk = sin θk, and c = cosφij . Here, rij is the center–center
distance of the two molecules i and j . θi is the angle between the axis of
the molecule i and the center–center connection line, and φij is the azimu-
tal angle between the axis of molecules i and j . More details can be found
in Gray and Gubbins [19].

Pure substance parameters were taken from Ref. 15 and are summarized
in Table I. They were adjusted to experimental vapor pressure and saturated



1392 Fernández, Vrabec, and Hasse

liquid density data of the pure substance. For symmetric diatomic molecules
fluorine (F2) and nitrogen (N2), and symmetric triatomic molecules like car-
bon dioxide (CO2) and carbon disulfide (CS2), as well as (C2) derivates as
ethane (C2H6) and ethylene (C2H4), the description of the interaction by
the 2CLJQ represents a good approximation. However, since SF6 molecules
are neither elongated nor quadrupolar, the fitted parameters obtained for
the 2CLJQ model lose all physical meaning.

For the modeling of mixtures, the like interactions are fully described
by the pure substance models. The same holds for the unlike quadrupolar
interaction, which is exactly determined by electrostatics, cf. Eq. (2). On
the other hand, the parameters of the unlike LJ interactions are obtained
from the pure fluid parameters by the modified Lorentz–Berthelot combi-
nation rule,

σ12 = (σ11 +σ22)

2
, (3)

and

ε12 = ξ ·√ε11ε22, (4)

where ξ is a binary interaction parameter that was adjusted to one
experimental bubble point of the binary mixture. It has been shown in pre-
vious work of our group for numerous systems [20–22] that binary and
ternary vapor–liquid equilibria can be described accurately in this way.
The parameters used in this work were taken from Ref. 22, and their val-
ues are 1.041, 0.974, and 0.954 for N2+ CO2, N2+ C2H6, and CO2+ C2H6,
respectively.

Table I. Potential Parameters for the Pure Fluids Used in This Worka,b

Fluid σ (Å) ε/kB (K) L (Å) 1020Q (C · m2) M (g · mol−1)

F2 2.8258 52.147 1.4129 2.9754 38.00
N2 3.3211 34.897 1.0464 4.8024 28.01
CO2 2.9847 133.22 2.4176 12.6549 44.01
CS2 3.6140 257.68 2.6809 13.0081 76.14
C2H6 3.4896 136.99 2.3762 2.7609 30.07
C2H4 3.7607 76.950 1.2695 14.4468 28.05
C2H2 3.5742 79.890 1.2998 16.9218 28.05
SF6 3.9615 118.98 2.6375 26.7074 146.06

a Values taken from Ref. 15.
b The molar mass M was taken from Ref. 27.
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2.2. Diffusion Coefficients

Diffusion coefficients can be calculated by equilibrium molecular
dynamics with the Green–Kubo formalism [23, 24]. In this formalism,
transport coefficients are related to integrals of time-correlation functions
of the corresponding fluxes. There are various methods to relate trans-
port coefficients to time-correlation functions; a good review was given
by Zwanzig [25]. The self-diffusion coefficient of a molecular fluid is
characterized by the mass current of a single target molecule [26]. It is
given by

Di = 1
3Ni

∫ ∞

0
dt

〈
Ni∑

k=1

vk
i (0) ·vk

i (t)

〉
, (5)

where vk
i (t) expresses the velocity vector of the center of mass of molecule

k of species i, and 〈· · · 〉 denotes an ensemble average. Equation (5) yields
the self-diffusion coefficient for component i by averaging over Ni mole-
cules. Also, the expression for the binary MS diffusion coefficient −D12 is
given in terms of velocities of the molecular the centers of mass

−D12 = x2

3N1

(
x1M1 +x2M2

x2M2

)2 ∫ ∞

0
dt

〈
N1∑

k=1

vk
1(0) ·

N1∑

k=1

vk
1(t)

〉
, (6)

where Mi denotes the molar mass and xi is the mole fraction of species i.

The present simulations yield both self-diffusion coefficients and binary
MS diffusion coefficients. Unfortunately, a direct comparison between the
simulated and experimental binary MS diffusion coefficients is not possi-
ble for the investigated mixtures due to the absence of experimental data.
Nevertheless, it is possible to estimate the binary MS diffusion coefficients
from empirical equations that relate the self-diffusion coefficients or infinite
dilution binary diffusion coefficients to the binary MS diffusion coefficients
through simple functions of the composition. Here, three such equations are
considered: Darken’s equation [17], Caldwell and Babb’s equation [16], and
Vignes’ equation [18]. Darken’s equation relates the self-diffusion coefficients
of both components D1 and D2 to the binary MS diffusion coefficient −D12,

−D12 =D1x2 +D2x1. (7)

It is important to note that the self-diffusion coefficients are needed for each
studied composition so that Eq. (7) is only of limited use for practical aplica-
tions. Vignes’ equation [18] and Caldwell and Babb’s equation [16] relate the
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MS diffusion coefficients to the infinite dilution binary diffusion coefficients
D∞

12 and D∞
21 . The Caldwell and Babb equation is given by

−D12 =D∞
21x1 +D∞

12x2, (8)

and the Vignes equation by

−D12 = (D∞
21)x1(D∞

12)x2 . (9)

Here, D∞
ij is the diffusion coefficient of species i infinitely diluted in

species j . In contrast to Darken’s equation, the equations of Caldwell and
Babb and of Vignes need only two values for the whole range of compo-
sition, which makes them attractive for practical applications. In the limit
of infinite dilution, the binary MS diffusion coefficient and the self-diffu-
sion coefficient coincide. This result can be obtained from Eq. (7), by tak-
ing the limit xi → 0, i.e., if x1 → 0 then −D12 =D∞

12 =D1, or if x2 → 0 then
−D21 =D∞

21 =D2. This equivalence is used to obtain the self-diffusion coeffi-
cients in the infinite dilution limit.

2.3. Simulation Details

Molecular simulations were performed in a cubic box of volume V

containing N = 500 molecules whose interactions are described by the
2CLJQ potential. The cut-off radius was set to rc = 5σ and the mole-
cules were assumed to have no preferential relative orientations outside
the cut-off sphere. For the calculation of the LJ long range corrections,
orientational averaging was applied with equally weighted relative orienta-
tions as proposed by Lustig [28]. The assumption of no preferential rel-
ative orientations beyond the cut-off sphere implies for the quadrupolar
interactions that long range corrections are not needed since they van-
ish. The simulations were started from a face-centered-cubic lattice config-
uration with randomly distributed velocities, the total momentum of the
system was set to zero, and modified Newton’s equations of motion were
solved with the Gear predictor-corrector integration scheme of fifth order
[29]. The time step for this algorithm was set to �t

√
ε1/m1/σ1 = 0.001.

The time-correlation functions were calculated in the NV T ensemble using
the Nosé-Hoover thermostat [30, 31] with a thermal inertial parameter
of 10 kJ · mol−1· ps2, and the diffusion coefficients were then obtained by
using Eqs. (5) and (6).

It must be pointed out that both NV E and NV T simulations were
performed, and the obtained diffusion coefficients agreed in all cases
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within their uncertainties. It was concluded that the Nosé–Hoover thermo-
stat does not influence the values of the diffusion coefficients. As NV T

simulations yield diffusion coefficients exactly at the desired temperature,
they were preferred. The simulations were equilibrated in a NV T ensem-
ble over 100,000–150,000 time steps. Once equilibrium has been reached,
the self-diffusion and MS diffusion coefficients were evaluated. To calcu-
late the binary MS diffusion coefficients at the desired T and p, a prior
NpT simulation [32] was performed, from which the density for the NV T

ensemble was taken. The statistical uncertainty of the diffusion coefficients
was estimated using the method of Fincham et al. [33]. In order to calcu-
late the self-diffusion and binary diffusion coefficients, similar criteria as
in Ref. 8 were applied. Self-diffusion coefficients were calculated by aver-
aging over 100,000 independent autocorrelation functions, i.e., over 200
time origins. The time origins were taken every 500th time step during
the period of production. Depending on the density, this distance between
time origins was extended in order to ensure their independence. The cor-
relation function was calculated over 2500 time steps in order to mini-
mize the error due to the long-time tail. From pilot runs with different
lengths of correlations functions, i.e., 1000, 2500, and 3500 time steps, this
error was estimated to be about 3%. For the calculation of the binary MS
diffusion coefficients, 12,000 independent time origins were averaged, here
a compromise between accuracy and simulation time was made. The time
origins were taken every 100th time step, and the correlation function was
calculated over 1000–1500 time steps. This requires simulations of about
1×105 to 4×105 time steps for the self-diffusion coefficients and 12×105

for MS diffusion coefficients. The binary MS diffusion coefficients were
calculated for mole fractions between 0.1 and 0.9. To obtain the binary
MS diffusion coefficients at infinite dilution, a polynomial function was fit-
ted to the simulation results between mole fractions 0.1 and 0.9 and then
extrapolated to zero and one, respectively. The relative error was estimated
as being the same as for the binary MS diffusion coefficients at 0.1 and
0.9, respectively.

An important issue is the influence of the moments of inertia of the
molecules on the self-diffusion coefficient. In all cases, the experimental
molecular mass [27] was distributed equally between the two LJ centers.
However, for CO2 this matter was investigated. For CO2, the experimental
molecular mass was distributed between the two LJ centers and the quad-
rupolar site, so that the mass of the two oxygen atoms was distributed
between the two LJ centers, and the mass of the carbon atom was asso-
ciated with the quadrupolar site. In this case, the tensor of moments
of inertia in a reference system with origin in the geometrical center of
the CO2 molecule is diagonal, whose two nonzero elements are given by
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4000 L2· g · mol−1· m2. On the other hand, if the moment of inertia is cal-
culated sharing the total molecular mass between the two LJ centers only,
the diagonal elements have a value of 5501 L2· g · mol−1· m2. No difference
for the self-diffusion coefficients was found for the two different choices.
This result is plausible, because the self-diffusion coefficient is related to
the translational motion of the molecular center of mass.

3. RESULTS

In this section, the predictions for self- and binary MS diffusion
coefficients are compared to experimental data and to the empirical equa-
tion of Liu et al. [34], which is a correlation based on molecular simu-
lation results and experimental data. The results are presented in terms
of the product of self-diffusion coefficient and density rather than the
self-diffusion coefficient itself, because the latter tends to infinity in the
zero density limit. The self-diffusion coefficient is a single-particle prop-
erty, thus highly accurate data can be obtained with modest computing
time. The uncertainty of the present self-diffusion data is less than 1%;
numerical values for all fluids are given in Table II.

3.1. Self-Diffusion Coefficients in Pure Fluids

Figure 1 shows the results for the product of density and self-diffu-
sion coefficient of F2, N2, CO2, and CS2 compared to experimental data
[35–38]. For F2 and N2, the considered state points correspond to the sat-
urated liquid, for which experimental densities were taken from Refs. 39
and 40. For CO2 and CS2, the state points lie in the homogeneous liq-
uid region at temperatures of 273 and 298.2 K, respectively. Overall, fair
agreement between experimental data and the predictions by molecular
simulation is found. The best results are obtained for N2 with an aver-
age deviation of only 6%. For F2, the predictions match the experimental
data at high densities, at low densities deviations up to 20% occur. The
predictions for CO2 are too low by about 20%. For CS2, the predictions
are also too low by about the same amount; in this case the correlation
of Liu shows better agreement with the experimental data. It should be
noted that the poorer performance of the CO2 and CS2 models is reason-
able since the three atoms of roughly the same size have not been explicitly
considered by the 2CLJQ model.

Figure 2 shows the results for the product of density and self-diffu-
sion coefficient of C2H6, C2H4, C2H2, and SF6 compared to experimen-
tal data [41–44] and Liu’s correlation. For C2H6 and C2H4 the considered
state points lie in the homogeneous liquid region at temperatures of 273 and
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Table II. Self-diffusion Coefficients for F2, N2, CO2, CS2, C2H6, C2H4, C2H2, and
SF6 Predicted by Molecular Simulation Compared to Experimental Data

T 10−3ρ 109Dexp. 109Dsim. T 10−3ρ 109Dexp. 109Dsim.

(K) (mol ·m−3) (m2 · s−1) (m2 · s−1) (K) (mol ·m−3) (m2 · s−1) (m2 · s−1)

F2 N2

54.0 44.824 0.569 0.569(2) 77.0 28.861 2.526 2.923(8)
62.0 43.497 1.05 0.905(2) 80.0 28.380 2.996 3.309(5)
70.0 42.166 1.69 1.361(3) 83.0 27.870 3.509 3.757(8)
78.0 40.787 2.46 1.903(6) 85.0 27.526 3.875 4.03(1)
88.0 38.968 3.57 2.793(8) 88.0 27.006 4.459 4.63(1)
96.0 37.405 4.55 3.575(6) 90.0 26.643 4.871 4.93(1)

105.0 35.497 5.73 4.74(1) 93.0 26.079 5.522 5.54(1)

CO2 C2H4

273.0 21.102 13.50 10.41(3) 298.15 4.4955 113.6 110.0(3)
273.0 21.453 13.00 10.39(6) 298.15 6.2923 79.91 76.1(3)
273.0 22.333 11.70 9.274(3) 298.15 8.0927 62.10 56.6(1)
273.0 23.046 10.70 8.156(4) 298.15 9.8895 49.45 42.1(2)
273.0 23.460 10.00 7.890(2) 298.15 11.690 39.58 33.20(8)
273.0 23.900 9.50 7.518(4) 298.15 13.487 31.21 25.5(1)

298.15 15.283 24.08 19.90(7)
298.15 17.084 18.20 14.60(3)
298.15 18.881 13.44 10.70(3)
298.15 20.681 9.927 7.28(9)

C2H6 CS2

273.0 15.431 14.6 14.40(4) 298.2 16.489 4.26 3.209(7)
273.0 16.550 11.8 11.71(6) 298.2 17.019 3.64 2.653(8)
273.0 17.968 8.91 9.008(4) 298.2 17.514 3.21 2.264(7)
273.0 18.902 7.24 7.230(2) 298.2 18.031 2.61 1.867(5)
273.0 19.609 6.27 5.870(1) 298.2 18.543 2.23 1.532(5)

C2H2 SF6

192.0 23.754 3.74 2.91(1) 240.0 12.091 3.35 3.52(3)
197.0 23.463 4.26 3.37(1) 250.0 11.653 3.94 4.28(2)
202.0 23.167 4.82 3.95(1) 260.0 11.221 4.66 4.89(4)
207.0 22.863 5.43 4.35(1) 270.0 10.742 5.59 6.03(2)
212.0 22.554 6.07 4.66(1) 280.0 10.201 6.71 7.49(4)
217.0 22.237 6.76 5.44(1) 290.0 9.606 8.29 8.87(5)
222.0 21.912 7.49 5.95(2) 300.0 8.846 10.5 11.00(2)
310.0 7.826 14.4 14.50(5)

298.15 K, respectively. For C2H2 and SF6 the states correspond to the satu-
rated liquid; the C2H2 densities were taken from Ref. 45. Good agreement
with the experimental data is found. The best results are found for C2H6 and
SF6, with average deviations of only 2 and 6%. For C2H2, the predictions of
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Fig. 1. Self-diffusion coefficients of fluorine,
nitrogen, carbon dioxide, and carbon disulfide as
predicted by molecular simulation in compari-
son to experimental data [35–38]. F2 (saturated
liquid, T = 54 − 105 K): � exp., � sim.; N2

(saturated liquid, T = 77 − 93 K): © exp.,.sim.;
CO2 (homogeneous liquid, T =273 K): � exp., �
sim.; CS2 (homogeneous liquid, T = 298.2 K): �
exp., � sim. The lines represent the correlation
of Liu et al. [34].

the simulation are too low by about 20%; for C2H4, they are also too low by
about 15%. The experimental data of C2H4 show a pronounced curvature
that is neither reproduced by the simulations nor by Liu’s correlation. Liu’s
correlation is as good as the simulation for SF6 and C2H6, worse than the
simulation for C2H2, but slightly better for C2H4.

To study the dependence of the self-diffusion coefficient on the num-
ber of particles, one state point for N2 at T = 85 K, ρ = 27.526 ×
103 mol · m−3 was chosen. For this state point, a sequence of simulations
with increasing number of particles: N = 108, 256, 500, 864, and 1372
was carried out. The values for the self-diffusion coefficients were 3.78(6),
3.96(5), 4.03(1), 4.13(2), 4.21(2) in 10−9m2· s−1, respectively. An estimate
of the self-diffusion coefficient for an infinite system size can be obtained
by a linear fit of the self-diffusion coefficient data as a function of the
inverse box length [46]. This fit yields a value of 4.50(4) × 10−9 m2· s−1

for an infinitely large system, that is about 10% larger than the results
with N = 500 particles. As most predictions of self-diffusion coefficients
are below the experimental data, the finite-size correction can improve the
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Fig. 2. Self-diffusion coefficients of ethane,
ethylene, acetylene, and sulfur hexafluoride as
predicted by molecular simulation in com-
parison to experimental data [38, 41–43].
C2H6 (homogeneous liquid, T = 273 K): �
exp., � sim.; C2H4 (homogeneous liquid, T =
298.15 K): © exp.,.sim.; C2H2 (saturated
liquid, T = 192 − 222 K): � exp., � sim.; SF6

(saturated liquid, T = 240 − 310 K): � exp., �
sim. The lines represent the correlation of Liu
et al. [34].

agreement with the experimental data for most fluids. Exceptions are F2,
SF6, and C2H6, for which the deviations would increase.

3.2. Binary Maxwell–Stefan Diffusion Coefficients

In this section, the results obtained for the binary mixtures N2+CO2,
N2+C2H6, and CO2+C2H6 at 253.15 K and 20 MPa are presented. Numer-
ical data are given in Table III: self-diffusion coefficients of pure fluids
in binary mixtures are reported with statistical uncertainties less than 1%;
and binary MS diffusion coefficients are reported with statistical uncer-
tainties of about 10%. These mixtures were selected since their vapor–
liquid equilibria were successfully calculated with the present molecular
models [22]. The simulated MS diffusion coefficients are compared with
the predictions from the equations of Darken, Caldwell and Babb, and
Vignes, cf. Eqs. (7)–(9). To evaluate their performance, the average relative
deviation,

∑
i (

−Dsim
12,i

− −Dequation
12,i

)/−Dsim
12,i

, was calculated. Experimental data
for comparison are unfortunately not available. The input needed for Eqs.
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Table III. Self-diffusion and Binary MS Diffusion Coefficients of the Binary Mixtures
N2 + CO2, N2 + C2H6, and CO2 + C2H6 at 253.15 K and 20 MPa Predicted by Molecular

Simulation

x1 10−3ρ (mol ·m−3) 109D1 (m2 · s−1) 109D2 (m2 · s−1) 109−D12 (m2 · s−1)

N2(1)+CO2(2)

0.0 24.08 8.7(9) 6.86(2) 8.7(9)
0.1 22.96 11.57(7) 8.40(3) 11.7(5)
0.2 21.47 14.60(7) 10.55(4) 15.4(3)
0.4 17.73 24.13(10) 16.74(2) 26(1)
0.5 15.59 30.77(8) 21.19(7) 31(1)
0.6 13.60 38.63(6) 26.83(19) 37(2)
0.8 10.90 53.87(20) 38.39(25) 47(3)
0.9 9.968 61.25(20) 44.08(24) 46(3)
1.0 9.356 67.49(13) 43(4) 43(4)

N2(1)+C2H6(2)

0.0 13.87 20(1) 11.97(4) 20(1)
0.1 13.85 17.39(9) 13.27(2) 18(1)
0.2 13.74 19.58(16) 14.98(4) 18(1)
0.4 12.91 26.48(6) 19.81(11) 26(2)
0.6 11.21 42.88(50) 31.18(20) 39(3)
0.8 9.302 54.42(11) 40.25(38) 48(4)
0.9 8.566 62.88(17) 47.08(40) 48(4)
1.0 8.059 70.21(20) 47(4) 47(4)

CO2(1)+C2H6(2)

0.0 16.10 13(1) 11.84(1) 13(1)
0.1 16.47 12.38(14) 11.75(6) 13(1)
0.2 16.88 11.98(5) 11.64(6) 13(1)
0.4 17.95 10.93(6) 11.09(8) 13(1)
0.6 19.49 9.63(4) 10.08(6) 12(1)
0.8 21.59 8.09(3) 8.66(9) 10.3(8)
0.9 22.94 7.21(1) 7.78(14) 8.2(7)
1.0 24.66 6.15(6) 5.1(7) 5.1(7)

(7)–(9) were therefore simulation data, i.e., self-diffusion coefficients for
Darken’s equation and infinite dilution diffusion coefficients for the equa-
tions of Caldwell and Babb and of Vignes.

Figure 3 shows the results for the binary MS diffusion coefficients for
the mixture N2+ CO2 compared to the equations of Caldwell and Babb,
Darken, and Vignes. The MS diffusion coefficient increases as the mole
fraction of N2 increases due to the smaller size and mass of the N2 mole-
cule. The simulation results lie above the linear interpolation between the
infinite dilution diffusion coefficients, i.e., Caldwell and Babb’s equation.
Vignes’ equation gives a different behavior, with negative deviations from
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the linear interpolation, whereas Darken’s equation predicts positive devia-
tions from the linear interpolation for high N2 mole fractions and negative
deviations for low mole fractions.

Figure 4 shows the results for the binary MS diffusion coefficients
of the mixture N2+ C2H6. In this case, the MS diffusion coefficients lie
below the linear interpolation of the infinite dilution diffusion coefficients
for mole fractions smaller than 0.5 and lie above the linear interpolation
for mole fractions larger than 0.5. The results of Darken’s equation agree
well with the simulation data. The average deviation is only about 6%. The
equation of Vignes fails to reproduce the shape of the curve, which results
in an average deviation of about 20%. The deviations between the simula-
tion results and the correlation of Caldwell and Babb are also about 20%.

Figure 5 shows the results for the binary MS diffusion coefficients
of the mixture CO2+ C2H6. In this case, the MS diffusion coefficients
lie above the linear interpolation between the infinite dilution diffusion
coefficients (Caldwell and Babb) over the whole composition range. Also,
Darken’s equation here yields the best results, with an average deviation
of 12%, whereas the equations of Caldwell and Babb and of Vignes yield
deviations of 23% and 28%, respectively. Again Vignes’ equation does not
reproduce the sign of the deviations from the linear interpolation correctly.

Figures 3–5 show that the curvature of the MS diffusion coefficient is
a function of the mole fraction, depending qualitatively on the mixture. It

Fig. 3. Binary MS diffusion coefficients for the
mixture N2 + CO2 at 253.15 K and 20 MPa as
predicted by molecular simulation in comparison
to empirical equations.
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Fig. 4. Binary MS diffusion coefficients for the
mixture N2+C2H6 at 253.15 K and 20 MPa as
predicted by molecular simulation in comparison
to empirical equations.

Fig. 5. Binary MS diffusion coefficients for the
mixture CO2+C2H6 at 253.15 K and 20 MPa as
predicted by molecular simulation in comparison
to empirical equations.
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Fig. 6. Self- and binary MS diffusion coeffi-
cients for the mixture N2(1)+CO2(2) at 253.15 K
and 20 MPa as predicted by molecular simula-
tion: �D1;�D2;�−D12. The lines serve as guide
for the eye.

can be concave, with a positive deviation from the linear course, or con-
vex with a negative deviation, or both. The investigated mixtures are not
strongly polar, and also in the 2CLJQ models only quadrupolar interac-
tions are present. However, the MS diffusion coefficients of these mixtures
cannot be well represented by the equations of Caldwell and Babb or of
Vignes, which are often claimed to be adequate for such simple mixtures
[18].

Dullien [47] compared the predictions of Vignes’ equation with exper-
imental data, and also found that in many cases, where the mixtures were
nonassociating, the equation of Vignes was not able to predict the binary
MS diffusion coefficients correctly. The equation of Darken shows the best
performance in all cases. That is due to the fact that it uses more informa-
tion than the other two. Moreover, it can be shown that it is exact if the
cross correlations between different particles of the same species and parti-
cles of different species are neglected [5]. Unfortunately, Darken’s equation
is of little use for most practical applications.

3.3. Binary Self-diffusion Coefficients

Figures 6–8 show the results for self-diffusion coefficients of the pure
components in the mixtures N2 + CO2, N2 + C2H6, and CO2 + C2H6 at
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Fig. 7. Self- and binary MS diffusion coeffi-
cients for the mixture N2(1)+C2H6(2) at
253.15 K and 20 MPa as predicted by molec-
ular simulation: �D1;�D2;�−D12. The lines
serve as guide for the eye.

Fig. 8. Self- and binary MS diffusion coeffi-
cients for the mixture CO2(1)+C2H6(2) at
253.15 K and 20 MPa as predicted by molecular
simulation: �D1;�D2;�−D12. The lines serve as
guide for the eye.
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253.15 K and 20 MPa, together with those for the binary MS diffusion
coefficients. For N2 + CO2 and N2 + C2H6, the MS diffusion coefficients
can qualitatively be described by a simple interpolation as indicated by
Darken’s equation. The situation is different for CO2+C2H6, cf. Fig. 8.
The self-diffusion coefficients are almost equal for that mixture at all com-
positions. Nevertheless, the MS diffusion coefficient from the simulations
is larger, so that Eq. (7) is inappropriate.

4. CONCLUSION

In the present work, molecular dynamics simulation and the
Green–Kubo formalism were used to calculate self- and binary MS diffu-
sion coefficients for a class of fluids modeled by the 2CLJQ intermolecu-
lar potential. The potential parameters were taken from previous work [15,
22], where they were adjusted to experimental vapor–liquid equilibria only.
Eight pure fluids, i.e., F2, N2, CO2, CS2, C2H6, C2H4, and C2H2 and
three binary mixtures, i.e., N2+ CO2, N2+ C2H6, and CO2+ C2H6, were
studied. Self-diffusion coefficients are reported with statistical uncertain-
ties smaller than 1%. These results do not consider corrections due to the
long-time tail; the error due to it is estimated to be about 3%. Deviations
between the predicted and the experimental data do not exceed 20%. The
correction due to the finite size of the simulated system increases the self-
diffusion coefficients typically by 10%. With this correction, an even better
agreement can be expected for most fluids. Exceptions are F2, SF6, and
C2H6 for which the deviations would increase.

For the binary mixtures, predictions from the simulations are only
compared to results from the equations of Darken, Caldwell and Babb,
and Vignes, as experimental data were not available. The self-diffusion
coefficients are reported with statistical uncertainties smaller than 1%, and
the binary MS diffusion coefficients are reported with statistical uncertain-
ties of about 10%. In agreement with previous findings [8], Darken’s equa-
tion yields the best agreement in all cases with average deviations of only
10%. Unfortunately, this equation requires self-diffusion coefficients in the
mixture as input data. The two simple equations of Caldwell and Babb
and of Vignes which use infinite dilution diffusion coefficients as input
data, fail to predict the shape of the composition dependence of the MS
diffusion coefficients, which shows a strong curvature, despite the fairly
simple molecules studied here. This indicates that more accurate correla-
tions for the prediction of MS diffusion coefficients are needed. For their
development, molecular simulation is a useful tool, as it can relate molec-
ular properties, i.e., polarity, anisotropy etc. to diffusion coefficients.
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